# Project: Exploring phase transitions and correlation inequalities through simulations

**Project supervisor:** Will Perkins

**Description:** Statistical physicists use probabilistic models to understand the behavior of gasses, fluids and solids as parameters like temperature or pressure change. Two simple mathematical models of a gas are the hard sphere and hard-core models, the first a distribution over sphere packings, the second over independent sets in a graph. This project will involve implementing several new algorithmic approaches to sampling from these probability distributions, and using the results of these simulations to understand new approaches to solving some of the important open mathematical problems in the area. Another aspect of the project will be creating useful visualizations of these statistical physics models and their related dynamics.

# Project: The Arithmetic of Elliptic Curves from a computational point of view

**Project supervisor:** Evangelos Kobotis

**Description:** The purpose of this project is to explore the world of elliptic curves with an emphasis on their arithmetic properties via programming. Students will be introduced to the fundamental concepts of the theory of elliptic curves and will produce software that will implement these concepts. The research aspect of the project is the discovery of elliptic curves with remarkable properties.

# Project: Skating through Math

**Project supervisor:** Abbas Jaffary

**Description:** In this project, students will explore the physics of roller skating, particularly on a Bank Track as shown above. There are many questions about this, including open questions. Particularly interesting are questions about the shape of the track, the paths describing motion of a skater and the most efficient path to skate around a track. Participants will explore these questions through computer simulation, along with possible trips to a roller derby track.

# Project: Combinatorial Game Theory

**Project supervisor:** Kevin Whyte

**Description:**

Combinatorial game theory studies deterministic, two player games of complete information. By decomposing these games into simpler pieces one gets a rich algebraic structure which is both quite useful in playing the games and has connections to the foundations of mathematics and to non-standard analysis. The theory was founded by Berlekamp, Conway, and Guy in the 1970’s and developed and applied to a wide range of games : Dots-and-Boxes, Sprouts, Nim, and others. In the 1990’s the theory was applied to the game of Go/Weiqi/Baduk by Berlekamp and Wolfe, producing problems that stumped professional players in China, Japan, and Korea. Open problems remain for a large variety of games, and we will explore many of these as well as develop new examples and applications.