
Honors College Capstone • May 2016

Persistent Homology on Algebraic
Varieties
Mason Boeman

University of Illinois at Chicago
boeman2@uic.edu

Abstract

To what extent can persistent homology, which is a way of discovering topological features of point-cloud
data, be used to reconstruct the topology of known algebraic varieties? Our hypothesis is that persistent
homology will be a useful tool for studying the topology of solution sets of polynomial equations, something
low dimensional examples have been suggestive of. Further application of persistent homology in higher
dimension, and with more intricate varieties requires faster algorithms than what are currently available.

I. Introduction

The goal of this project is to produce a set of
tools written in python which can compute the
persistent homology of an approximation of
a given algebraic variety. The homology of
the variety can be inferred from the persistent
homology of its approximation if the approxi-
mation has high accuracy. This process has two
natural steps: sample points in a uniform way
on an algebraic variety, and then compute the
persistent homology of the point cloud data.
This paper will focus on the latter of the two
steps, and explain how and why each sub step
is done. The sub steps are as follows:

1. Compute the neighborhood graph for
some ε, which will bound above the size
of all edges in our approximation.

2. Compute the Vietoris Rips complex from
the neighborhood graph, which will give
us a set of simplices and an ordering on
them. These simplices will be an approx-
imation of the surface of our algebraic
variety.

3. Compute the persistent homology of the
Vietoris Rips complex

4. Display the barcode graph for analysis.

II. Neighborhood Graph

a. Definition

In order to do any computations with our sam-
pled points, we need to turn them into a graph.
This will allow us to store the spatial relation-
ship between points in a convenient way for
future computations. A neighborhood graph
G with some ε is a weighted undirected graph
whose vertices are the sampled points on the
variety, and with the property that any two
vertices in G are connected by an edge if and
only if their distance is less than or equal to
ε of each other (with respect to their ambient
space) [4]. The result is a graph in which the
neighborhood of a vertex v corresponds with
the points inside the closed ball centered at the
point v of radius ε.

b. Computation

We will store the neighborhood graph as a list
of adjacencies. Our method of computing the
adjacencies is recursive, and hinges on the fol-
lowing observation: if two points are within
epsilon, then each of their corresponding coor-
dinates are within epsilon of each other. Also,
if two points in Rn lie on either side of a hy-
perplane of dimension n-1, then there is an
epsilon edge connecting them only if they are
both within epsilon of the hyperplane. Note
that this condition is necessary but not suf-

1

mailto:boeman2@uic.edu


Honors College Capstone • May 2016

ficient for them to be within epsilon of each
other. Therefore, the algorithm is as follows:

Function NeighborhoodGraph(S, i, ε)
Data: a set of vertices and an index of

the coordinate to consider
Result: report all edges shorter than ε
m = median({si|s ∈ S});
X = {x ∈ S|xi < m};
Y = {y ∈ S|yi >= m};
Xε = {x ∈ X|xi > m− ε};
Yε = {y ∈ Y|yi < m + ε};
for x ∈ Xε do

for y ∈ Yε do
if dist(x, y) < ε then

report edge (x, y);
end

end
end
NeighborhoodGraph(X, i, ε);
NeighborhoodGraph(Y, i, ε);

end
Algorithm 1: Neighborhood Graph Compu-
tation

c. Result

The result of the algorithm running on 1000
points sampled on a torus is the following
graph (shown from two angles)

III. Weighted Simplicial Complexes

a. Definition

First, we’ll introduce a few definitions. A k-
simplex is a k dimensional polytope which is
the convex hull of k+ 1 points. These points are
called the vertices of the k-simplex. A (k− 1)-
simplex σk−1 is the face of a k-simplex σk if the
vertices of σk − 1 are a subset of the vertices of
σk. A sub-simplex is the same as a face, but can
be any degree less than k (instead of requiring
degree k− 1). A simplicial complex C is a set
of simplices with the following properties:

• if σ1 is in C, and σ2 is a face of σ1, then
σ2 is in C.

• if σ1 and σ2 are in C, then σ1 ∩ σ2 is a
sub-simplex of both σ1 and σ2 (possibly
the empty simplex).

A weighted simplicial complex is a simplicial
complex with the added property that each
simplex is assigned a real-valued weight. In
particular we will be interested in the Vietoris-
Rips complex, which is a weighted simplicial
complex where the weight of a simplex is the
largest distance between any two vertices of
that simplex (the weight of zero-simplices is
zero) [4].

2



Honors College Capstone • May 2016

b. Computation

We store the Vietoris-Rips complex as a list
of weighted simplices. To compute the list
we use the Bron-Kerbosch algorithm to com-
pute the maximal cliques of the neighborhood
graph. Then, for every maximal clique, report
every face of the simplex whose vertices are
the points in the clique. The algorithm can be
modified to only return simplices with dimen-
sion less than k for some k, which improves
running time from O(2n) to O(nk), which is
significantly faster for smaller choices of ε in
the neighborhood graph construction.

c. Compatible Total Ordering

Later, in the persistent homology computation
we will need a compatible total ordering on
simplices. This is an order on simplicies with
the property that every simplex is larger than
all of its sub simplicies [1]. The order we will
use is the following: if weight(σ1) 6= weight(σ2)
then we sort by weight. If weight(σ1) =
weight(σ2) then sort by the degree of the sim-
plices. If this is also a tie, we need to break the
tie, but how we do so does not matter. In our
implementation, we compare the hashes of the
simplex objects, but any method is fine, as long
as it always returns the same answer.

Note that this is indeed a compatible total
ordering of a Vietoris Rips complex, because
for any face σ1 of a simplex σ2, the vertices
of σ1 are a subset of the vertices of σ2, so the
maximum distance between any two vertices
in σ1 is less than or equal to the maximum dis-
tance between any two vertices in σ2. If they
are equal, then the degree of a face is always
less than the simplex it is a face of, so σ1 is less
than σ2.

IV. Persistent Homology

a. Simplicial Homology

Intuitively, the simplicial homology is the num-
ber of k-dimensional holes in a given simplicial
complex. Specifically, we will be using the con-
struction (which uses Z/2Z coefficients) which

is detailed by Edelsbrunner [1].

b. Persistent Homology

Persistent homology is a tool for inferring the
continuous from the discrete [2]. In our partic-
ular case, "the continuous" refers to the homol-
ogy of our original algebraic variety, and "the
discrete" refers to our input points, which were
sampled on the variety. Let C be a Vietoris-
Rips complex with a compatible total ordering.
Let Cσ = {τ ∈ C | τ < σ}. Cσ is still a Vietoris-
Rips complex because the definition of Vietoris-
Rips complex is implied by the definition of
"<" on simplices, so we can compute the sim-
plicial homology of each Cσ and compare them
to each other.

The introduction of σ to the complex can do
two things to the simplicial homology: add a
single element of homology, or remove a single
element. For example, adding an edge between
two points can either reduce the number of
connected components by one or add a loop
to the homology, but not both. Therefore each
simplex can be labeled "positive" or "negative,"
depending on whether it introduced new ho-
mology or eliminated existing homology [1, 3].
These positive and negative elements can be
paired, so that each pair create and destroy the
same element of homology, and this pairing is
called the persistence pairing.

c. Persistence Pairing

It is possible to map positive/negative pairs of
simplices to homology classes of cycles, and
Zomorodian gives an algorithm to do this [3].
The reason you would want such a map is be-
cause the difference in the weights between the
positive and negative simplices in a pair indi-
cates how long the corresponding topological
attribute persists. A longer lifespan indicates
that the attribute is more significant [1, 3].

d. Persistence Algorithm

The following is the algorithm given by
Zomorodian in [3].

3



Honors College Capstone • May 2016

Our data will be stored in a sparse n× n
matrix, where n is the number of simplices in
our Vietoris-Rips complex, and whose entries
are in Z/2Z. The rows and columns are both
labeled by the simplices, in increasing order
along both the rows and columns. We will
call this matrix M, and M[i, j] is the element
in the ith column and the jth row. We initialize
the matrix with all zeros, then for each entry
M[a, b] in M, set M[a, b] = 1 if and only if σb is
a face of σa.

Let low(σ) be the function which gives the
simplex corresponding to the row containing
the lowest nonzero entry in the column corre-
sponding to σ. low(σ) = 0 if and only if there
are no nonzero entries in the column indexed
by σ.

Now the matrix is reduced according to the
following algorithm due to Edelsbrunner [1]:

Data: M a matrix
Result: M is now reduced
for j = 1 to n do

while ∃σk < σj | low(σk) = low(σj)

do
add column σk to σj;

end
end

Algorithm 2: Persistence
An example of the matrix M before and af-

ter this algorithm is run can be found in figure
1.

After running the algorithm, a negative sim-
plex σ− and a positive simplex σ+ are paired if
and only if σ+ = low(σ−). Additionally, a pos-
itive simplex can be paired with no negative
simplex, implying that that element of homol-
ogy persists at least as far as our current choice
of ε in the neighborhood graph construction.

V. Barcode Graph

The barcode graph is the most straightforward
method of displaying the information com-
puted by the persistence algorithm. The bar-
code graph is essentially a graph with the x
axis as ε from the neighborhood graph, and
the y axis as homology. To produce this, we

draw horizontal lines which start and end at x
coordinates equal to the weights of the paired
positive and negative simplices. As long as
the lines are staggered in the y direction so
they can be distinguished, the y coordinates
of the segments do not matter. We sort by di-
mension, and color the segments according to
the dimension of homology the segment rep-
resents. Figures 2 and 3 are examples of what
this program outputs.

VI. Conclusion

Unfortunately, these algorithms run slowly on
large sample sizes, which are very important
for accuracy of the topological data that can be
computed from points sampled on an algebraic
variety. The way to get around this speed limit
is to reduce the ε from neighborhood graph so
our initial graph is much less dense. Figures
2 and 3 show the difference between the com-
plete graph and a much more modest ε cutoff.
Both pictures are suggestive of a single cycle,
a single connected component, and no other
homology, so you can still draw conclusions
from larger sample sizes.

References

[1] Herbert Edelsbrunner and John Harer. Per-
sistent homology—a survey. In Surveys on
discrete and computational geometry, volume
453 of Contemp. Math., pages 257–282. Amer.
Math. Soc., Providence, RI, 2008.

[2] Shmuel Weinberger. What is. . .persistent
homology? Notices Amer. Math. Soc.,
58(1):36–39, 2011.

[3] Afra J. Zomorodian. Topology for computing,
volume 16 of Cambridge Monographs on Ap-
plied and Computational Mathematics. Cam-
bridge University Press, Cambridge, 2009.
Reprint of the 2005 original [MR2111929].

[4] Afra J. Zomorodian. Fast construction of
the vietoris-rips complex. Computers &
Graphics, 34(3):263 – 271, 2010.

4



Honors College Capstone • May 2016



0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Figure 1: The matrix in the persistence algorithm, before (top) and after (bottom) reduction. The input is the complete

graph on four vertices.

5



Honors College Capstone • May 2016

Figure 2: 15 points randomly chosen on the unit circle. neighborhood graph has an ε of 2. Total runtime was 11.7
seconds.

Figure 3: 100 points randomly chosen on the unit circle. neighborhood graph has an ε of .5. Total runtime was 2
minutes 33 seconds.

6


	Introduction
	Neighborhood Graph
	Definition
	Computation
	Result

	Weighted Simplicial Complexes
	Definition
	Computation
	Compatible Total Ordering

	Persistent Homology
	Simplicial Homology
	Persistent Homology
	Persistence Pairing
	Persistence Algorithm

	Barcode Graph
	Conclusion

