
Tracking Solution Paths with phcpy

Konrad Kadzielawa

April 28, 2016

Abstract

Solving polynomial systems for maximum number of real solutions arise quite
frequently in a variety of scientific fields. It has been the subject of this study
to explore the parameter space of two polynomial systems: system derived from
two intersecting circles and a system defined by tangent lines to four spheres. The
discriminant variety of the two intersecting circles was completely found and de-
scribed, while the random walk optimization algorithm for finding the maximum
number of tangent lines to four spheres was studied.

1 Statement of Purpose
This is the report of the study conducted in the Mathematical Computing Lab at Uni-
versity of Illinois at Chicago for Spring 2016, entitled “Tracking solution paths with
phcpy” supervised by Prof. J. Verschelde and mentored by Nathan Bliss.

2 Introduction
The overall goal of this project was to develop Python scripts in order to explore the
parameter space of systems arising in applications using the sweep homotopies imple-
mented in phcpy. Nevertheless, the feature most extensively used in this project was
the blackbox solver feature implemented in PHCpack, which allowed us to heuristi-
cally explore the parameter space of various polynomial systems.

3 Motivation
Solving polynomial systems for maximum number of real solutions arise quite fre-
quently in a variety of scientific fields.
One of the motivating studies behind this project came from the paper published by
P.Dietmaier from the Institut für Mechanik, Technische Universität Graz, entitled “The
Stewart-Gough Platform of General Geometry can have 40 real postures” where he
showed that Stewart-Gough platform actually possesses 40 real assembly modes or
postures.

1



4 Discriminant
To understand what it takes to find the maximum number of real solutions, I’ll need to
very briefly touch upon three concepts relevant here: the resultant, the discriminant
and the discriminant variety.
Given two polynomials, P and Q, the resultant is the determinant of the Sylvester ma-
trix associated to P and Q, let’s call it f . To determine the discriminant, we need to
further compute the resultant of f and f ′. Lastly, once the discriminant for the system
has been found, its solution set constitutes the discriminant variety.
Why look for discriminant variety you might ask? In very simple terms - in the pa-
rameter space, maximally many real roots areas are very rare and they lie in extremely
small chambers which are determined by the discriminant variety. Once we find it,
we can choose from various regions defined by the discriminant variety in search of
maximum # of solutions.
Nevertheless, the following two problems will illustrate an important issue: while the
discriminant variety offers a theoretical solution to the problem of finding the maxi-
mum number of real solutions, for almost all nontrivial problems the complexity of the
discriminant variety is too prohibitive for the theoretical solution to work in practice.

5 Two Circles Problem
As an example problem of explicitly finding the discriminant variety we considered
a simple system consisting of a unit circle and circle defined by its 2 parameters: its
radius and center located on the x-axis. This was described by the polynomial system:

f (x,y) =

{
x2 + y2−1 = 0
(x− c)2 + y2− r2 = 0

To arrive at the solution, we performed a systematic loop through the combination of
centers and radii inputs, given a step size (loop increment).

Listing 1: Function returning # of all solutions given center/radius.
from phcpy . s o l v e r import s o l v e
from sympy import symbols
from numpy import a r a n g e

def r e t u r n s o l n s ( c i , c f , r i , r f , s t e p ) :
m y s o l s l i s t = [ ]
m y t u p l e l i s t = ( )
f o r i in a r a n g e ( c i , s t e p + c f , s t e p ) :

f o r j in a r a n g e ( r i , s t e p + r f , s t e p ) :
x , y = symbols ( ’ x y ’ )
c o e f f = f l o a t ( i )
r a d = f l o a t ( j )
f1 = s t r ( x ˆ2 + y ˆ2 − 1) + ’ ; ’

2



f2 = s t r ( x ˆ2 − 2∗ c o e f f ∗x + c o e f f
ˆ2 + y ˆ2 − r a d ˆ 2 ) + ’ ; ’

f = [ f1 , f2 ]
s = s o l v e ( f , s i l e n t = True )
m y t u p l e l i s t = ( i , j , s )
m y s o l s l i s t . append ( m y t u p l e l i s t

)
re turn m y s o l s l i s t

The output of this function was a list of tuples which was further modified to arrive
at the # of real solutions. Each pair of radii and x-axis centers was exported to JSON
format and subsequently plotted in the matplotlib, with lime colored circles represent-
ing the discriminant variety. Our final output consisted of the following figure:

6 Four Spheres Problem
As a more advanced example of investigating the parameter space of polynomial sys-
tems, we considered the following geometric problem: Given four spheres, how many

3



real lines are tangent to all four spheres? The system of polynomial equations rep-
resenting the problem contained 6 equations, 6 variables and total of 9 parameters all
defining the centers and radii of 3 spheres (1 was a unit sphere).
As mentioned previously, the complexity of the parameter space for almost all nontriv-
ial problems is prohibitively complex. Therefore, we performed a random walk through
the parameter space using two approaches: “wiggle” approach where we varied each
parameter individually around a good solution and “box minimizing” approach where
we zoned in/minimized the range of parameters upon successive runs. Sample output
from the “wiggle” approach is given:

[1.2298563009936108, 1.5877174064656896, 1.2510163838483237, 1.1698149762829906,
0.61428882846887711, 0.66700970876612264, 8]
[1.3298563009936109, 1.5877174064656896, 1.2510163838483237, 1.1698149762829906,
0.61428882846887711, 0.66700970876612264, 8]
[1.1518321516923646, 0.64248128111568947, 1.5657561296056171, 0.88083453863158423,
0.61156443017219031, 0.52009454251661402, 12]
I have found all 16 solutions with the parameters being: [1.1518321516923646, 0.64248128111568947,
1.465756129605617, 0.88083453863158423, 0.61156443017219031, 0.52009454251661402,
16]

The output above was taken from an instance when only 6 parameters were varied
(all radii were set to 1

2 ) and 6 parameters in order [a1,a2,a3,b2,b3,c3] represent the
values of spheres’ centers at (a1,0,0),(a2,b2,0) and (a3,b3,c3). Last element in each
list represents total number of real solutions.
First list came from a random guess, second represented a “wiggle”. “Wiggle” showed
no improvement, hence new random guess was generated. Third list was again a ran-
dom guess, while the fourth list showed the “wiggle” (in this case the third parameter
decreasing by .1 yielded higher # of real solutions, hence the new list was kept).

The approach of “box minimizing”, where upon successful runs, we decreased the
range parameters were randomly chosen from, yielded much poorer results, with much
longer time required to find all 16 real solutions. Sample output from “box” approach:

[1.4953553356286367, 0.57391064220933552, 1.2462095414234216, 0.953361181894123,
0.68226098447409278, 0.51743542020598154, 16]
[1.4826077817136394, 0.84827506029075073, 1.419849649609402, 0.64240241111165153,
0.77036583674361392, 0.55912122836549705, 12]
I have found all 16 solutions with the parameters being: [1.4953553356286367, 0.57391064220933552,
1.2462095414234216, 0.953361181894123, 0.68226098447409278, 0.51743542020598154]

In this case, we actually ran into all 16 real solutions through a random search first
and minimizing the range only decreased the number of real solutions.
On average however, “box minimizing” approach performed slightly better than a
purely random walk. The running time comparison between all 3 approaches can be
seen seen on the poster presented along this written report.
A snippet of the “wiggle” python code in form of two functions (random list generator

4



and max. solution finder) can be seen below (breaklines for readability purposes):

Listing 2: Random List Generator Function

# g i v e n range low t o high , and s i z e = # o f random params ,
t r i a l = # o f random l i s t , r e t u r n l i s t o f random l i s t s

def r a n d o m n u m s l i s t g e n e r a t o r ( low , high , s i z e , t r i a l s ) :

l i s t o f l i s t s o f n u m s = [ ]
f o r i in xrange ( t r i a l s ) :

l i s t o f l i s t s o f n u m s . append ( [ random .
un i fo rm ( low , h igh ) f o r in xrange ( s i z e
) ] )

re turn l i s t o f l i s t s o f n u m s

Listing 3: Max. Solutions Function of “wiggle” approach

# t h i s f u n c t i o n t a k e s t h e b e s t o f 100 random l i s t s ,
x l i s t c o n t a i n s ‘ ‘ w i g g l e d ” l i s t s ( . 1 = ” w i g g l e ” f a c t o r
)

# f u r t h e r u p d a t e d l i s t c o n t a i n s b e s t l i s t o f t h e x l i s t
def t a k e b i g l i s t r e r u n ( b e t t e r l i s t ) :

u p d a t e d b e t t e r l i s t = m a x f i r s t l i s t p r i n t o u t (
p o p l i s t o f l i s t s ( b e t t e r l i s t ) )

l o c a l b e t t e r l i s t = u p d a t e d b e t t e r l i s t

x l i s t = v a r y a r g s f i r s t m a x l i s t (
l o c a l b e t t e r l i s t , . 1 )

f u r t h e r u p d a t e d l i s t = m a x f i r s t l i s t p r i n t o u t (
p o p l i s t o f l i s t s ( x l i s t ) )

i f l o c a l b e t t e r l i s t [ 6 ] == 1 6 :
p r i n t ” I have found a l l 16 s o l u t i o n s wi th

t h e p a r a m e t e r s b e i n g : ” + s t r (
l o c a l b e t t e r l i s t [ 0 : 6 ] )

e l i f f u r t h e r u p d a t e d l i s t [ 6 ] == 1 6 :
p r i n t ” I have found a l l 16 s o l u t i o n s wi th

t h e p a r a m e t e r s b e i n g : ” + s t r (
f u r t h e r u p d a t e d l i s t [ 0 : 6 ] )

e l i f f u r t h e r u p d a t e d l i s t [ 6 ] <= l o c a l b e t t e r l i s t
[ 6 ] :

main ( )
e l s e :

5



f u r t h e r u p d a t e d l i s t =
t a k e b i g l i s t r e r u n (
v a r y a r g s f i r s t m a x l i s t (
f u r t h e r u p d a t e d l i s t , . 1 ) )

re turn f u r t h e r u p d a t e d l i s t

Lastly, one of our solutions with return values plugged into “Grapher” application
on OS X and the full solution of 12 real tangent lines (provided by Prof. Verschelde) is
shown below:

Figure 1: One of our 8 real tangent lines solutions.

Figure 2: Fully real solution: 12 real tangent lines

6



References
[1] D. Cox, J. Little, and D. OShea. Ideals, Varieties and Algorithms. An Introduction

to Computational Algebraic Geometry and Commutative Algebra . Undergradu-
ate Texts in Mathematics. SpringerVerlag, Fourth Edition, 2015.

[2] J. Verschelde Lecture 2, Elimination Methods & Lecture 24, Newton’s Method
with Deflation in MCS 563: Analytic Symbolic Computation Lecture Notes

[3] P. Dietmeier. ”The Stewart-Gough platform of general geometry can have 40 real
postures”, in Advances in Robot Kinematics: Analysis and Control, Kluwer Aca-
demic Publishers, 1998, pp.1-10

7


