Introduction

Many polynomial systems arising in application from science and engineering involve several parameters.
engineering involve several parameters.
It is of great interest to know for which values of the parameters It is of great interest to know for which values of the parameters
do the solutions of the polynomial collide into multiple solutions do the solutions of the polynomial collide into multiple solutions or degenerate into positive dimensional solution sets (non isolated
solutions).
The goal of the project was to develop Python scripts to heuristically explore the parameter space of polynomial systems using the blackbox solver feature of PHCpack -one specifically created to search for isolated solutions.

Motivation

The maximization of the real solutions of the systems of polynomial equations is of great interest in many practical areas, among them, design of mechanisms.
One of the motivating papers behind this project comes from P. Dietmaier from the Institut fur Mechanik, Technische Universitat Graz with the paper entitled: "The Stewart-Gough Platform of General Geometry can have 40 real postures" where he systematically shows, albeit through a different numerical scheme, that a Stewart Gough platforms (shown below) actually possesses
40 real (the only realizable) assembly modes or postures (real 40 real (the only realizable) assembly modes or postures (real solutions).

Actually solving this problem involves finding all the possible numbers of real solutions with respect to the parameters' values, searching for their maximum.

Discriminant

To understand what it takes to find the maximum number of real solutions, we'll need to very briefly touch upon two concepts relevant here: the discriminant and the discriminant variety. As an example, a simple quadratic,

$$
f(x)=a x^{2}+b x+c
$$

has a discriminant of

$$
\begin{equation*}
\Delta=b^{2}-4 a c \tag{2}
\end{equation*}
$$

More generally, for a polynomial with indeterminate coefficients we may ask for a condition on the coefficients for which there are multiple roots, i.e.: where both the polynomial and its derivative vanish, implying that $\Delta(f)$ can be seen as the resultant of f and its derivative. Equivalently,

$$
\Delta(f)=\left\{\begin{array}{l}
f(x)=0, \\
\operatorname{rank}\left(J_{f}(x)\right)<n
\end{array}\right.
$$

where $n=\#$ of variables
Lastly, given $\Delta(f)$, we define the discriminant variety as the solution set of the discriminant.

Two Circles Problem

Initially we considered a problem of interesting two circles in a plane - one being a unit circle, the other one being defined by its two parameters: its radius and \mathbf{x}-axis coordinate

$$
f(x)=\left\{\begin{array}{l}
x^{2}+y^{2}-1=0 \\
(x-c)^{2}+y^{2}-r^{2}=0
\end{array}\right.
$$

With initial and final value of radii and x-coordinates, we performed both a random walk and a systematic loop through all values of r and c within a given range, calculating the \# of real solutions for each r, c combination.

Algorithm

Data: $r_{i}, r_{f}, x_{i}, x_{f}$, step variables
Result: set of tuples ($r, x, \#$ of sols)
initialization;
for r_{i} to r_{f} do
for x_{i} to $x_{f} \mathbf{d o}$
set up the pol
set up the polynomial system, plug into Blackbox solver, return \# of real sols;
end
end
end
if $\#$ of real sols $=1$ then
export to matplotlib, color lime;
discriminant variety
else if \# of real sols = 2 then
export to matplotlib, color red;
2 real solutions
else
export to matplotlib, color blue;
0 real solutions

Results

All points are solutions for the given combinations of the circle's radius and its center at the x -axis, with red being 2, blue being 0 and lime 1 real solution(s). Lime-colored points constitute the discriminant variety for this system.

Four Spheres Problem

As a more advanced example of investigating the parameter space of polynomial systems, we considered the following geometric problem: Given four spheres, how many lines are tangent to all four spheres?
The polynomial system was generated, containing 6 equations, 6 variables and 9 parameters defining the centers and radii of 3 spheres (1 was a unit sphere)
We performed a random walk through the parameter space using two approaches: "wiggle" approach where we varied each param eter individually around a "good" solution and "box minimizing" approach where we zoned in/minimized the range of parameters upon successive runs.

Procedural Outline

1. Generate 100 lists of random parameters
2. Obtain \# of real solutions for each, pick list with highest number of solutions (initial list).
2.1 Generate 18 new lists, each with single up-down change to each
parameter (wiggle approach).
Generate 18 new lists using new range, where range $=\max -\min$ of the existing parameters (box approach)
3. Compare two solutions: if initial \leq new, repeat steps 3,4 .
4. Otherwise, rerun the program, generate new 100 lists.

Sample Solution

Figure: One of our 8 real
tangent lines solutions.

Figure: Fully real solution: 12 real tangent lines"

Results

Both of the algorithms were allowed to run for 2 hours

The random walk through the parameter space, in both the "box minimizing" and "parameter wiggle" approaches yielded at most 8 real tangent lines, albeit the time required to find them was much smaller in the "wiggle" approach. In addition, the number of "hits" of 8 the "wige" approach. In abinat he wer of "hits of 8 tangents lines paramete" no in was much higher in the "parameter wiggle" approach
Nevertheless, the heuristic approach seems unlikely to locate all 12 real tangent lines to 4 spheres in question.

Running Time Comparison

Based on 5 sets of simulations and averaging the time necessary to arrive at 8 real tangent lines to our system, we can conclude. to arrive at 8 real tangent lines to our system, we can conclude: given "wide" range of parameters, both of our algorithms fare slightly better than a purely random search
The most interesting difference comes about at the "narrow" range for parameters around a well known solution - "wiggle" algorithm fares much better than "box" or a random search.

Conclusion

In this project, we examined the heuristic approach toward finding the maximum number of real solutions to polynomial systems using phcpy's Blackbox solver.
As two main examples we analyzed the "two circle" and "four spheres" problems. As expected, our two circle example was much easier to deal with and the parameter space has been solved. The four spheres example led to a maximum solution of 8 real tanThe four spheres example led to a maximum solution of 8 real
gent lines, where the complete solution has been shown to consist gent lines, where the complete solution has been shown to consist
of 12. Nevertheless, different algorithmic approaches gave soluof 12. Nevertheless, different algorithmic approaches gave solu-
tions in much different time frames, implying certain qualities of tions in much differen
the parameter space.

References

D. Cox, J. Little, and D. OShea. Ideals, Varieties and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra . Undergraduate Texts in Mathematics SpringerVerlag, Fourth Edition, 2015.
J. Verschelde Lecture 2, Elimination Methods \& Lecture 24 Newton's Method with Deflation in MCS 563: Analytic Symbolic Computation Lecture Notes
P. Dietmeier. "The Stewart-Gough platform of general geometry can have 40 real postures", in Advances in Robot Kinematics: Analysis and Control, Kluwer Academic Publishers, 1998, pp.1-10

