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Summary

Two novel ways of creating saturated packings were ex-
plored in this project. The first one involves a gaseous
phyiscs engine with variable physics factors and the
second uses additively weighted Voronoi decomposi-
tions of a plane containing randomly inserted disks.

Motivation

A popular chemistry experiment shows that a mixture
of certain pure liquids can be denser than each of the
constituents. Mixing a liter of methanol with a liter of
ethanol gives a solution with volume measurably less
than 2 liters. A mathematical analog of this experiment
is the fact that a packing of unequal disks in the plane
can be denser than a packing of equal disks, as long as
the radii of the disks are not very close. Exactly how
close is ”very close” is an area of active research. This
project aims to study the behavior of two-species pack-
ings, except for special ratios of radii where everything
fits together very nicely. In this research project we will
study randomly generated two-species packings in or-
der to gain insight into the shape of the density bound-
ing function.

Background

It was previously proven by Joseph Lagrange in
1773 that a single species packing density of two-
dimensional disks on an infinite plane is π√
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0.9069). However, it is still unknown what radii form
the highest boundary condition, and which proportions
of those radii create an optimal packing.

Generating a Palette

Random. Our first generator selected a random point
on the palette, checked if there was room at that point,
and added the new circle. This clearly was founda-
tional, as it vastly undershot the predicted density.
Gravity. The next step was to create a physics en-
gine so that the disks could interact as if they were
truly touching each other in the physical world. A
downward gravity, however, tended to separate the two
species over time since the slight perturbations pushed
the smaller species to the bottom. This would not be
ideal since it would approximate two single species
packings.
Gaseous. Our final iteration kept the concepts of the
physics engine, but eliminated the gravity influence. In
this stage, disks floated around freely, only affected by
air resistance (to dampen shaking), other disks, and the
walls.

Disk Physics

Our update function utilizes mostly dx and dy values for each disk
to persuade them out of each other’s borders. We found using hard
boundaries made it difficult for disks to order themselves neatly,
since preventing movement of disks when they are tangential to
another will inadvertently prevent movement of a group of disks in
unison. Therefore, a very simplified form of our physics is visu-
alized below, where these steps are evaluated for every disk in the
palette.

Visualizing the Palette

To comprehend the interactions, relationships, and general tenden-
cies of our palette, we created an interactive, live visualizer to run
our packings using JavaScript. See an example of it in use below.

Button Function
”Fix” Sets dampening factor to 0.99
”Natural” Sets dampening factor to 0.98
”Settle” Sets dampening factor to 0.94
”Freeze” Sets dampening factor to 0
”All” All circles update
”Intersect” Only intersecting circles update
”Pend Freeze” Freezes palette at 0 intersections
”Release” Resets dampening factor after

”Pend Freeze” activates
”Show” and ”Hide” Display and Hide Circles
”Clear” Removes all circles
”Saturate” Runs saturate()

Saturation

A saturation algorithm was necessary in order to ensure the validity
of density calculations from a given palette. The current methodol-
ogy deletes disks slowly and allows the palette more time to settle
and possibly reach zero intersections rather than attempting to add
disks back into the palette post-deletion.

The possibility of over-deleting disks and the human attention
needed to determine reasonably saturated packing presented lim-
itations when collecting data.

Saturation (continued)

A more efficient saturation algorithm using additively weighted
Voronoi diagrams was also investigated but not implemented into
our physics and data collection engines.

The algorithm works by checking a disk centered on a vertex of
the additively weighted Voronoi diagram for intersection with one
of its nearest neighbors. This determines whether a disk can be in-
serted into the palette. After every insertion, new vertices are cre-
ated and tested until exhaustion of non-intersecting vertices. Once
exhaustion is reached, a set of static disks can be considered satu-
rated.

Shown above is a palette consisting of 462,282 static disks of radii
r=1.0 and r=0.5 with proportions of each determined arbitrarily that
was created in just over seven minutes.

GPE Data Collector

Concept. In order to collect data, we constructed a series of
data collection engines, so that multiple palettes could be generated
without manipulation of individual parameters in every iteration.
Method.
1. Prompt user for 2 radii and the number of data points.
2. Divide the spectrum of 0:100 to 100:0 ratios of the two species

into the specified number of data points.
3. Fill a palette with disks according to the current proportion.
4. Update the palette until the number of intersections reaches

zero.
5. Save the results in a csv file.
6. Repeat steps 3-5 until data is collected for each data point.

Building. Our first construction had a simple boundary condition,
adding circles until the density reached 0.7, far below the antici-
pated maximum. This allowed for the first collection of data, but
clearly, this is far under-estimating the palette’s capabilities, and is
giving results with very little utility.

Stage One. Our improvement to this C++ program shell integrated
a manual saturation function within. After several models of this
function, however, the ability to automate the process of filling,
updating, and cleaning a palette to a high standard of saturation
was unfortunately not reached.

GPE Data Collector (continued)

Stage Two. In order to still explore the validity of our saturation
function, we added the same function into our JavaScript visual-
izer (to offer us more control by being able to see what we are
manipulating), we were able to collect some data. Though it must
be addressed that this data, due to a weak saturation function that
fails to mathematically calculate the saturation of a palette, proved
to be inconsistent. Data found using this stage can be found below.

It would be expected that a single species packing (the endpoints of the
curves, where only species exists at 100%), would be the least dense,
with the mixture of the two being able to fit more disks into the same
space. The familiar curve from the chemistry experiment was only
found in the case of r=1 and r=0.8, which suggests that a more rigorous
saturation function is needed to obtain more precise data.

Results

While preliminary data on our saturation algorithm was collected man-
ually via our Stage Two data collector, there are still two glaring limita-
tions of these results. First, a lack of a proper saturation function leaves
the program to decide incorrectly when a palette is full. Second, without
enough computing power, our disks are relatively large compared to their
boundary size, leaving our results not closely approximating an infinite
plane as originally desired.

Conclusions

In this project we have created a gaseous physics engine with friction, a
working Voronoi decomposition-based saturation algorithm, and a data
engine for variable disk proportions. Further incorporation of the ad-
ditively weighted Voronoi saturation algorithm with an efficient physics
engine should be pursued in order to obtain a comprehensive insight into
the density bounding function of two-species disk packings.
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