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The maximum packing density for disks of the same radius
in the plane is well-understood, and is equal to 7/ V12(~
0.9069). Less 1s known about the maximum density of
packings of unequal disks in the plane. This projects ob-
jective 1s to 1nvestigate the shape of the curve describing
the optimal density of a randomly-generated two-species
packing of disks the plane. We do this by generating ran-
dom packings of disks of two radiui. The parameters we
vary are the ratio of the two radii, and the relative number
of disks of each size.

Background

The highest density packing of two-dimensional disks on
an 1nfinite plane 1s well known. However the upper bound
on the density of a two species packing, given proportion
and radi1 1s unknown. The findings in this project are a
continuation of a previous project done 1n the Spring of
2018 which resulted 1n the gaseous physics engine and
voronoi implementation used here. It was found in the
previous project that the gaseous physics (as opposed to
random placement or gravity) produced the best results for
our purposes.

Within the Physics Engine, the effect of hard boundaries became
a problem 1n computing reliable and consistent density data.
Additionally, to check for collisions, every disk’s position 1s
checked against every other disk which runs in &'(n?) complexity.
To shorten run-time, a condition was added, wherein the nested
loop would skip any calculations for disks further apart than the
sum of their radii. Though this improved run-time significantly,
complexity remained unchanged.

Further attempts included partitioning the palette into a grid of
cells, thus only necessitating that a check be ran on disks within
the same or adjacent cells. The implementation of spatial hashing
1s still underway.

Additively Weighted Voronoi Decompositions

Simulation and Computation

Our Physics Engine was written in C++ and computes
dynamic interactions between disks in a 2D plane while
JavaScript was used for visualizing processes and results.
The physics operated under the following rules.

Move Left/Right and
—» Up/Down from any
intersections

Move Inside
Boundary

Dampen movement
(dx and dy)

Computations. The largest parts of our project were our
computational programs functioned to create and fill a
2D plane, or “palette,” of disks, arrange them according
to physics algorithms, automate the testing process, test
saturation of each palette, and report the final results into
compact files. All written in C++, our Physics Engine
and, using the CGAL libraries, Saturate Process were
nested within our much larger Data Collector.

Visualizations. The ability to visualize our results, as well
as our processes, became fundamental in the progress of
the project for checking the effectiveness of our computa-
tional engines, as well as displaying the results. Our visu-
alization programs were based in JavaScript, with the most
powerful being the Voronoi Playground.

Once we have filled a palette with disks, one of the most crucial
steps 1s determining whether it 1s sufficiently “‘saturated.” We
define the palette to be saturated if for any point in our palette,
there 1s not space to add another disk at that point without it
intersecting at least one of the already existing neighbors or
the boundaries of the palette. It would be exhaustive to naively
check every point and run an intersection calculation. Instead, we
incorporated Voronoi decompositions into our analysis.

Additvely Weighted Voronoi decompositions are a set of lines
drawn on the plane such that any point on the line lies as far as
possible from all adjacent disks, or sites. An arrangement may
look something like the following:

From this, we can extract the vertices of these line segments, and
this would grant us a finite set of points to check for any open
space. The use of the CGAL Voronoi library to extract vertices
was contributed by Dr. David Dumas over email (October 2018).
While this runs within our Data Collector program to determine
saturation, our JavaScript adaptation also allows for visualizations
of the process. Essentially, we filter these vertices to determine
which have available space, and which of the two species could fit
within that space. This can be seen below.

The x-axes record the proportion of the palette filled with disks of radius
1 and the y-axes record the density of the final saturated packing and have
a much smaller range than O to 1 to more clearly present our results. After
determining the closest values to approximating an infinite plane that our
programs could handle, we applied multiple runs of our Data Collector

at various ratios near this Iimait.

Our collected densities for these runs

were consistent across trials, and a single set of representatives for each

of six ratios are provided below.
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While the radu1 values are scaled above such that the larger radius 1s 1.0
for all runs, it 1s valuable to note for future projects that the actual scale,
larger radius : side length of finite boundary, was approximately 1:52.

Despite many challenges throughout the progression of the project,
there are still many areas which can be sharpened in future research
to improve upon the results collected herein.

Larger palettes. Because we are limited to finite palettes, our larger
radius would only be capable of reaching a density around 0.8356
even 1f placed in an i1deal hexagonal packing. This means that more
precise data can be collected 1f the palettes used are grown relative to
the disks to better approximate this infinite plane.

Optimization of algorithms. This project was limited to the scale of
disks used due to complexity. In order to compute significant results
in a reasonable amount of time, a primary objective should be to re-
duce the complexity physics algorithm. The current solution 1s spatial
hashing which will split the palette into cells that can be represented as
vectors in the C++ Data Collector which allow for dynamic allocation
of disks within the cells.

| Results and Conclusions

The project approximated average and maximal densities given a pro-
portion and ratio of radii in a two-species randomly-generated pack-
ing. The data would suggest a density upper bound of density around
0.75 for our testing data, although the expected outcome was a density
exceeding that of a single species. It 1s likely that due to the current
saturation algorithm an effect like heat expansion places the disks far-
ther apart and prevents higher densities from occurring. Obtaining
a more precise average 1s possible using more data sets with a larger
disk-to-palette ratio in order to avoid the problems that arise with strict
boundary conditions.
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