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Summary

The project is on Arnold’s proof of Abel’s theorem in which he pro-
vided a geometric explanation of the theorem. The proof demon-
strates that we cannot construct a closed formula that produces the
roots of general fifth degree polynomial using a finite combination
of field operations, radicals, and elementary functions.

Our goal is to showcase the most important aspects of Arnold’s
proof. Using javascript we developed an animated webpage appli-
cation that allows users to visually understand the main argument
of Arnold’s proof. Specifically, it shows that given any expression
f : {a0, . . . ,a4} → C5 that uses elementary functions and radicals,
one can construct a closed path in the space Poly5(C) of monic
fifth degree polynomials, such that all values of f return to their
original positions, while the roots z1, . . . ,z5 undergo a non-trivial
permutation; therefore such f cannot reconstruct the roots z1, . . . ,z5
from the coefficients a0, . . . ,a4.

Motivation

Abel’s Theorem asserts impossibility of finding a closed formula
for the roots of a general polynomial of degree five or higher. The
purpose of this animation is to capture the key idea of the proof of
the theorem.

Necessity of Radicals for Solving Quadratic Equations

Figure: 1. Case for Monic p(z) in Poly2(C)

We now show that there is no formula for the roots z1,z2 of a gen-
eral Monic polynomial p ∈ Poly2(C) in terms of analytic (single
valued) functions f ,g : {a0,a1} → C such that f (a0,a1) = z1 and
g(a0,a1) = z2 for a general quadratic equation.

Suppose otherwise. Then, using Vieta’s formula we find that the
coefficients a0,a1 given by a0 = z1z2 and a1 =−(z1+z2), which are
symmetric expressions in z1,z2. Starting from distinct points z1,z2
we can continuously move them until they change places z1→ z2,
z2→ z1. Under this motion:
I Each of the coefficients a0,a1 follows a closed path,
I The functions f (a0,a1) and g(a0,a1) follow closed paths.

Contradicting the assumption that f and g follow the roots z1,z2,
that interchanged places.
Conclusion: Any formula would require use of multi-valued func-
tion (Quadratic Formula).

Radicals in Complex Variables

Recall that for any non-zero z ∈ C and n ∈ N there are precisely n
complex numbers w with wn = z.

z = r · eiθ , w = n
√

r · e
i
n(θ+2kπ) k = 0,1, . . . ,n−1.

Let γ : [a,b]→ C \ {0} be a closed path starting and ending at z.
Then there are precisely n paths ωk : [a,b]→ C\{0} that trace the
nth roots of γ(t):

wk(t)n = γ(t) t ∈ [a,b], k = 0,1, . . . ,n−1.

Note that while γ is closed γ(a) = z = γ(b) the paths ωk need not
be closed, yet the map

ω0(a), . . . ,ωn−1(a) 7→ ω0(b), . . . ,ωn−1(b)

is always a cyclic permutation of the n roots of the base point z.

Radical, Functions, and a Commutator

Let z = f (a0,a1,a2,a3,a4) be an analytic function in complex vari-
ables a0, . . . ,a4, and suppose that for each j = 0, . . . ,4 we have two
closed loops

βj : [0,1]→ C, γj : [0,1]→ C
that start and end at some fixed aj, and such that f ◦ β. and f ◦ γ.

avoid 0. Perform the path

[β ,γ] = βγβ
−1

γ
−1; (Commutator)

on a0, . . . ,a4 and follow the 5 paths that trace the values of
5
√

f (a0, . . . ,a4).

These paths are closed loops because both β and γ define cyclic
permutation of the 5 radicals, and cyclic permutations commute.

Arnold/Abel Argument in the Simplest Case

We now rule out the possibility that roots of a Monic polynomial
p ∈ Poly5(C) could be expressed by a formula

z = g
(

n1
√

f1(a0, . . . ,a4),
n2
√

f2(a0, . . . ,a4), . . . ,
nk
√

fk(a0, . . . ,a4)
)

(1)

for some analytic f1, . . . , fk : C5→ C and g : Ck→ C.
Fix distinct z1, . . . ,z5 in C that represent roots of p(z). Construct
continuous paths that move

β̂ : (z1,z2,z3,z4,z5) 7→ (z2,z3,z1,z4,z5)

and
γ̂ : (z1,z2,z3,z4,z5) 7→ (z1,z2,z4,z5,z3)

and denote by β , γ the corresponding motions of the coefficients
a0, . . . ,a4 of p(z). Then
I Since β̂ permutes the roots, βj follows a closed loop (Vieta).
I Each of f1(), . . . , fk() follow a closed loop under this motion.
I The paths of ni

√
fi amount to a cyclic permutation.

I The same applies to γ̂ .
I Following β̂ γ̂ β̂−1γ̂−1 each of the paths of ni

√
fi closes up.

I Therefore g
(

n1
√

f1, . . . , nk
√

fk
)

follows a closed loop.
I But the roots z1, . . . ,z5 got permutated.

So g
(

n1
√

f1, . . . , nk
√

fk
)

could not follow the roots z1, . . . ,z5

Commutators in Sn

Our ability to solve algebraic equations using radicals is dependent
on the solubility of special classes of groups. Sn is the group of all
permutations. An is the group of all even permutations, where An
forms a subgroup of Sn.
General Facts:
i If H is a subgroup of a soluble group G, then H is soluble.

ii If a group G is not commutative and the only subgroups are the
unit element and G itself, then G is not soluble.

iii For n≥ 5, Sn contains a subgroup isomorphic to A5.
iv Let G be a finite group. Then G is soluble if and only if there

exists n ∈ Z such that G(n) = {1} (The nth commutator group).
Conclusions:
I S2 is a commutative group and thus soluble.
I S3 soluble group as [[a,b], [c,d]] = {1}.
I S4 soluble group as [[[a,b], [c,d]], [[a,b], [c,d]]] = {1}.
I By (i) and (iii) it follows that for n≥ 5, Sn is not soluble.

Necessity of Nested Radicals to Solve Cubic Equations

Figure: 2. Case for Monic p(z) in Poly3(C)

We now demonstrate that a formula for the roots of a Monic
polynomial p ∈ Poly3(C) cannot be expressed by a formula f :
{a0,a1,a2}→ C3, for f analytic and no nested radicals.

Suppose otherwise, and consider a general Monic polynomial p ∈
Poly3(C) with roots z1,z2,z3. As in (1), no such formula can ex-
press the roots of p. We can further construct paths that cyclically
permute the roots z1,z2,z3 while inducing closed loops for each co-
efficient of p and for the value of f . The paths of n

√
f will either

follow a closed loop or rotate by some angle θ . Applying the com-
mutator the values of n

√
f undergo a rotation ∆θ = 0, while inducing

a non-trivial permutation of the roots z1,z2,z3, contradiction.
Conclusion: Any formula would require use of nested radicals
(Cardano’s Formula).

Arnold’s Theorem

Theorem. The Monodromy of the algebraic function x(a) defined
by the quintic equation x5+ax+1 = 0 is the non-soluble group of
the 120 permutations of 5 roots. That is, no function having the
same topological branching type as x(a) is representable as a finite
combination elementary functions and radicals [1].

Impossibility of Solving the Quintic in Radicals

Figure: 3. Case for Monic p(z) in Poly5(C)

Suppose otherwise, and let A = {a1, . . . a4}. Then, there exist func-
tions f1, . . . , fk : A→ C5 that expresses the roots of a general Monic
polynomial p ∈ Poly5(C). By previous case there must be at least
N ≥ 3 levels of nested radicals. Thus, suppose we have an expres-
sion of N ∈ N levels of nested roots. Since S5 is not soluble, then
we know that there exists continuous paths such that their commu-
tator induce a non-trivial permutation of the roots, while both the
coefficients of p and fi, for 1≤ i≤ k, follow a closed loop, contra-
diction.
Conclusion: One cannot construct an expression for the roots of
a general p ∈ Poly5(C) in terms of it’s coefficients, analytic func-
tions, and radicals.

Challenges

One of our biggest challenges was a matter of translating abstract
mathematical concepts into explicit computer language that al-
lowed us to obtain the results we desired.

Conclusion

Our project provides a comprehensive illustration of Arnold’s proof
of Abel’s theorem in an accessible manner. Our goal was to il-
lustrate these abstract mathematical concepts into a language that
anyone with basic knowledge of mathematics can understand and
appreciate, while building intuition of the mathematics occurring
in the background.
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